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Abstract

The exponential growth of digital banking in India has created a critical gap between technological adop-
tion and user preparedness, particularly in terms of �nancial literacy and fraud awareness. This paper
presents RupeeBee, a comprehensive mobile-�rst �ntech platform developed to address three funda-
mental challenges: widespread �nancial illiteracy among retail banking customers, the alarming rise in
digital fraud incidents (smishing, phishing, social engineering), and linguistic accessibility barriers a�ect-
ing non-English speaking populations. Our solution implements a scalable microservices architecture that
integrates: (1) a multilingual �nancial literacy engine supporting six Indian languages with gami�ed learn-
ing modules; (2) a production-grade fraud prevention system featuring BERT-based SMS spam detection
with attention mechanisms achieving 94% accuracy; (3) a heuristic URL threat intelligence scanner with
sub-200ms latency; and (4) a suite of 45+ veri�ed �nancial calculators with PDF reporting capabili-
ties. The platform was developed during the PSBs Series 2025 hackathon and successfully deployed as a
cross-platform solution (Android, iOS, Web). This publication details the system architecture, machine
learning methodologies, privacy-preserving data �ows, real-world performance metrics, and deployment
strategies. Our evaluation demonstrates signi�cant improvements in fraud detection accuracy compared
to traditional rule-based systems, while maintaining user experience through low-latency inference and
intuitive multilingual interfaces.

Keywords: Financial Literacy, Fraud Detection, Deep Learning, SMS Spam Classi�cation, Attention
Mechanisms, Multilingual NLP, Mobile Banking Security, Fintech

1 Introduction

1.1 Motivation and Problem Statement

The democratization of digital payments through
UPI, mobile banking, and digital wallets in India
has revolutionized �nancial transactions. However,
this rapid technological adoption has signi�cantly
outpaced �nancial literacy development, creating a
substantial vulnerability gap. According to RBI re-
ports, digital fraud cases increased by 300% between
2020-2024, with social engineering attacks (phishing,
vishing, smishing) accounting for 68% of incidents.

Three critical challenges emerge:

1. Financial Illiteracy: 73% of rural and 54% of
urban Indians lack basic understanding of �nan-
cial products, investment instruments, and digital

banking safety protocols.

2. Sophisticated Fraud Vectors: Cybercrimi-
nals employ advanced social engineering tech-
niques targeting �rst-time digital users through
fake KYC updates, lottery scams, and malicious
loan applications.

3. Linguistic Barriers: English-dominated bank-
ing interfaces alienate 60% of the population, par-
ticularly in tier-2 and tier-3 cities where regional
language �uency is essential.

1.2 Our Contribution

RupeeBee addresses these challenges through an in-
tegrated platform featuring:

� Shield Security Framework: Real-time fraud
detection using deep learning models with 94%
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Figure 1: RupeeBee mobile application interface
demonstrating multilingual support and intuitive naviga-
tion for �nancial literacy and fraud prevention features.

accuracy for SMS spam classi�cation and pattern-
based URL threat analysis.

� Multilingual Education Engine: Gami�ed �-
nancial literacy modules in 6 Indian languages
(English, Hindi, Punjabi, Bengali, Marathi, Tel-
ugu) with voice-based navigation.

� Financial Empowerment Tools: 45+ veri�ed
calculators covering EMI, SIP, FD, PPF, NPS,
loans, insurance, and retirement planning.

� Privacy-First Architecture: On-device ex-
pense tracking with zero cloud synchronization,
ensuring PII remains local.

2 System Architecture

2.1 High-Level Design Philosophy

RupeeBee employs a modular, layered architecture
optimized for scalability, security, and cross-platform
deployment. The design follows microservices prin-
ciples with clear separation between the presenta-
tion layer (Flutter mobile/web), business logic layer
(Flutter + local SQLite), and external inference ser-
vices (Dockerized ML APIs).

2.2 Mobile-First Frontend Architecture

The client application is built using Flutter 3.x, en-
suring:

� Cross-Platform Consistency: Single codebase
targeting Android, iOS, and Web with native per-
formance pro�les (60 FPS on mid-range devices).

� State Management: Riverpod for reactive state
management with immutable data structures.

� O�ine-First Capability: All �nancial calcula-
tors, expense tracking, and educational content
function without internet connectivity.

Figure 2: High-level backend service architecture show-
ing microservices isolation, API gateway integration, and
database interactions for ML inference services.

Figure 3: Secure data �ow architecture ensuring PII re-
mains on-device while leveraging cloud-based ML intelli-
gence for threat detection. Arrows indicate data move-
ment; red denotes sensitive data con�ned to device stor-
age.

� Accessibility Integration: Flutter TTS (Text-
to-Speech) powers the Sarathi voice assistant for
visually impaired and illiterate users.

2.3 Privacy-Preserving Data Flow

Figure 3 illustrates our privacy-by-design approach.
Sensitive personal �nancial information (expense
records, account balances, transaction history) is
processed and stored exclusively on-device using en-
crypted SQLite databases. Only anonymized API
requests (SMS text for classi�cation, URL strings for
threat lookup) are transmitted to backend inference
services, with no user identi�ers attached.
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2.4 Backend Microservices

Two primary containerized services handle ML infer-
ence:

1. SMS Spam Detection API: Python Flask
+ TensorFlow Serving, deployed as Docker con-
tainer with horizontal scaling support.

2. URL Threat Intelligence API: Node.js + Re-
dis caching layer for rapid domain reputation
lookup.

Both services are orchestrated via Kubernetes
with API gateway rate limiting (1000 req/min per
user) and centralized logging (ELK stack).

3 Financial Literacy Engine

3.1 Gami�cation Strategy

Traditional �nancial education su�ers from low en-
gagement and poor retention. RupeeBee implements
gami�cation through:

� Quest System: 10 progressive learning paths
(Money Basics, Student Banking, Credit Scores,
Investing, etc.) with badge rewards and streak
tracking.

� Interactive Simulations: 10 fraud scenario
trainings where users experience realistic scam in-
terfaces (fake KYC alerts, lottery noti�cations, job
o�er scams) in a sandboxed environment.

� Mini-Games: 5 scenario-based games covering
�nancial crisis management, retirement planning,
digital payment safety, and credit card optimiza-
tion.

3.2 Multilingual Content Delivery

All 8 learning modules (Budgeting, Savings & SIP,
Investment Strategy, Credit Management, Tax Ba-
sics, Government Schemes, GST, Digital Safety) are
fully localized in 6 languages. Content adaptation
goes beyond translation to include:

� Cultural contextualization (e.g., festival savings
patterns for Diwali/Eid)

� Regional scheme awareness (state-speci�c subsi-
dies)

� Voice navigation via Sarathi assistant using
Speech-to-Text and NLP

3.3 Financial Calculation Suite

45+ production-grade calculators validated by �nan-
cial domain experts:

� Banking Products (7): EMI (basic/advanced),
FD-TDR, FD-STDR, RD, Interest Comparisons

� Post O�ce Schemes (9): PPF, SSA, SCSS,
KVP, MSSC, MIS, NSC with interest rate APIs

� Investments (5): SIP, SWP, Lumpsum, ELSS,
Mutual Fund comparisons

� Loans (6): Home, Car, Bike, Plot, Commercial,
Personal with prepayment analysis

� Retirement Planning (5): NPS, EPF, APS,
PMSYM, Gratuity calculators

� Insurance & Bonds (8): PLI, RPLI, PMJJBY,
PMSBY, SGB, 54EC Bonds

� General Tools (5): Compound Interest, In�a-
tion Adjustment, CAGR, FIRE planning

Each calculator generates PDF reports with cal-
culation breakdowns, saved locally with full history
tracking (2,960+ FAQ database integrated).

4 Shield Security Framework

The Shield module represents our core technical con-
tribution: a multi-layered fraud prevention system
operating as a background service on Android de-
vices (foreground service for persistent monitoring).

4.1 SMS Spam Detection System

4.1.1 Problem Formulation

Indian banking SMS fraud exhibits unique charac-
teristics:

� Code-Mixing: Messages blend English, Hindi,
and transliterated text ("Aapka account blocked
hai, click here")

� Urgency Manipulation: Psychological triggers
("Immediate action required", "Last chance")

� Brand Impersonation: Fake sender IDs mim-
icking banks (SBI-Alert, HDFC-Security)

Traditional keyword-based �lters fail due to lin-
guistic variations and adversarial evasion. We em-
ploy a context-aware deep learning approach.
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Figure 4: Deep neural network architecture for SMS
classi�cation. Input embedding layer processes tokenized
text, followed by LSTM encoding and attention-weighted
classi�cation.

4.1.2 Neural Network Architecture

Figure 4 depicts our classi�cation pipeline:

1. Input Embedding: SMS text tokenized and
embedded using pre-trained BERT multilingual
base model (104 languages)

2. Contextual Encoding: Bidirectional LSTM
layers (256 units) capture temporal dependencies

3. Attention Mechanism: Self-attention layer
weights tokens by fraud likelihood (Figure 5)

4. Classi�cation Head: Dense layers with
softmax output (3 classes: Transac-
tional/Promotional/Spam)

4.1.3 Attention Mechanism for Fraud Indi-

cators

The attention layer (Figure 5) learns to focus on
high-risk tokens regardless of position. For example,
in the message "Congratulations! You won lottery of
Rs. 25 lakh, click bit.ly/abc123 to claim", attention
weights are highest for:

� "Congratulations" (0.89) - Urgency trigger

� "lottery" (0.94) - Fraud keyword

� "click" (0.87) - Phishing indicator

� "bit.ly" (0.91) - Shortened URL (malicious pat-
tern)

Figure 5: Attention mechanism visualization showing
weight distribution across SMS tokens. Darker regions in-
dicate higher attention scores for fraud-indicative words.

Figure 6: Training loss and accuracy curves over 50
epochs. Rapid convergence indicates e�ective learning,
with minimal over�tting (train-test gap <2%).

4.1.4 Training and Performance

Dataset: 150,000 annotated Indian banking SMS
messages (65% transactional, 20% promotional, 15%
spam) collected from crowdsourced user submissions.
Training Protocol:

� Optimizer: Adam with learning rate 0.001

� Batch size: 32, Epochs: 50

� Regularization: Dropout (0.3) + L2 penalty

� Validation split: 80-20 train-test

Figure 6 shows training convergence. The model
achieves:

� Accuracy: 94.2% (test set)

� Precision: 92.8% (spam class)

� Recall: 96.1% (critical for security)

� F1-Score: 94.4%
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Figure 7: Performance comparison showing our
attention-based deep learning model signi�cantly outper-
forms Naive Bayes, SVM, and keyword-based �lters in
Recall (critical for minimizing false negatives in security
contexts).

Figure 8: Real-world SMS classi�cation examples
demonstrating correct identi�cation of phishing at-
tempts, lottery scams, and fake KYC alerts across En-
glish and Hinglish messages.

4.1.5 Comparative Analysis

Figure 7 benchmarks our attention-based model
against traditional classi�ers:

Key advantages:

� vs. Naive Bayes: +18% Recall (handles code-
mixed text better)

� vs. SVM: +12% F1-Score (captures semantic
context)

� vs. Keyword Filters: +27% Recall (robust to
adversarial evasion)

Figure 9: URL threat detection pipeline featuring lex-
ical analysis, domain reputation lookup, and pattern
matching for real-time classi�cation.

4.2 URL Threat Intelligence System

4.2.1 Threat Landscape

Phishing URLs constitute the primary vector for cre-
dential theft in mobile banking fraud. Attackers em-
ploy:

� Domain Typosquatting: Similar-looking do-
mains (icicibank-secure.com vs icicibank.com)

� URL Shorteners: Obfuscation via bit.ly, tinyurl
masking malicious destinations

� Free TLDs: Cheap domains (.tk, .ml, .ga) dis-
proportionately used for phishing

4.2.2 Detection Pipeline

Figure 9 illustrates our heuristic-based detection sys-
tem:

Feature Extraction:

1. Lexical Features: URL length, subdomain
depth, special character ratio, entropy (random-
ness score)

2. Domain Features: TLD risk category, WHOIS
age, SSL certi�cate validity

3. Content Features: Presence of IP addresses,
suspicious keywords (login, verify, update)

4.2.3 TLD Risk Analysis

Our analysis of 50,000 phishing URLs reveals TLD
distribution patterns (Figure 11). Free/cheap TLDs
(.tk, .ml, .ga, .cf) account for 42% of phishing sites
despite representing only 3% of legitimate domains.
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Figure 10: Key lexical and structural features extracted
from URLs for threat classi�cation. Feature importance
scores shown from Random Forest analysis.

Figure 11: Distribution of Top-Level Domains in con-
�rmed phishing campaigns. Free TLDs are dispropor-
tionately represented, informing our risk scoring algo-
rithm.

Figure 12: Distribution of threat scores across analyzed
URLs in production deployment, showing clear separa-
tion between legitimate banking sites and phishing at-
tempts.

4.2.4 Threat Classi�cation

URLs are categorized into 4 risk levels:

� Safe (0-25): Veri�ed domains, strong SSL, es-
tablished WHOIS

� Suspicious (26-50): Recently registered,
medium-risk TLD

� Dangerous (51-75): Multiple risk indicators,
shortened URL

� Malicious (76-100): Blocklist match, high en-
tropy, phishing patterns

Figure 13: Common threat patterns detected: ty-
posquatting variations, subdomain obfuscation, and URL
shortener exploitation techniques.

Figure 14: Real-time detection latency distribution.
92% of URL threat analysis requests complete within
150ms, ensuring seamless user experience with no per-
ceptible lag.

5 Performance Evaluation

5.1 Latency Analysis

For mobile security applications, user experience de-
pends critically on response time. Our optimized in-
ference pipeline achieves sub-200ms latency for 95th
percentile of requests (Figure 14).

Optimization Techniques:

� Model Quantization: TensorFlow Lite conver-
sion reduces SMS model size by 4x (23MB →
6MB) with <1% accuracy loss

� Redis Caching: URL domain reputation cached
for 24 hours, reducing API calls by 78%

� Batch Inference: SMS processing batched (max
5 messages) when queue depth >3
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Figure 15: Enhanced performance metrics comparing
SMS spam detection and URL threat intelligence sys-
tems. High Recall in SMS classi�cation minimizes false
negatives (critical for security), while URL system bal-
ances precision and speed.

5.2 Comprehensive Metrics

Figure 15 presents consolidated performance across
both detection systems:

SMS Spam Detection:

� Precision: 92.8%, Recall: 96.1%, F1: 94.4%

� False Positive Rate: 3.2% (acceptable for non-
blocking warnings)

� Inference Time: 87ms (median), 145ms (95th per-
centile)

URL Threat Intelligence:

� Precision: 89.4%, Recall: 91.7%, F1: 90.5%

� True Negative Rate: 96.3% (legitimate URLs cor-
rectly identi�ed)

� Inference Time: 62ms (median), 118ms (95th per-
centile)

5.3 Production Deployment Results

During 3-month beta testing with 80+ users:

� SMS Blocked: 1,500+ spam messages inter-
cepted (avg 18.8 per user)

� URLs Flagged: 400+ malicious links identi�ed
(78% from shortened URLs)

� User Reports: 96% satisfaction with accuracy,
4% false positive complaints

� System Uptime: 99.7% (backend API availabil-
ity)

Figure 16: SMS spam detection model performance
breakdown by message category, showing consistent high
accuracy across transactional, promotional, and spam
classes.

Figure 17: URL analysis performance across di�er-
ent threat categories, demonstrating e�ective detection
of phishing, typosquatting, and shortened URL obfusca-
tion techniques.

6 Implementation Details

6.1 Technology Stack

Frontend: Flutter 3.x (Dart), Riverpod state man-
agement, Go Router navigation, Flutter TTS/STT
for voice features

Backend: Python Flask (SMS API), Node.js
Express (URL API), Dockerized microservices, Su-
pabase BaaS

Database: SQLite (on-device), PostgreSQL
(server-side analytics), Redis (caching layer)

ML Framework: TensorFlow 2.x, TensorFlow
Lite (mobile deployment), Transformers library
(BERT)

Security: TLS 1.3, Certi�cate pinning, AES-256
encryption, OWASP compliance
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Figure 18: Complete machine learning pipeline from
data collection through model deployment, showing data
preprocessing, feature engineering, model training with
hyperparameter tuning, validation, and production de-
ployment with monitoring.

DevOps: Docker, Kubernetes, GitHub Actions
CI/CD, Firebase monitoring, ELK logging

6.2 Machine Learning Pipeline

Figure 18 illustrates the end-to-end ML work�ow for
fraud detection model development and deployment:
Pipeline Stages:

1. Data Collection: Crowdsourced SMS corpus +
public phishing URL datasets

2. Preprocessing: Text normalization, tokeniza-
tion, transliteration handling

3. Feature Engineering: BERT embeddings, lex-
ical features, domain metadata

4. Model Training: Hyperparameter tuning via
grid search, k-fold cross-validation

5. Validation: Hold-out test set + adversarial ex-
amples testing

6. Deployment: TFLite conversion, containeriza-
tion, A/B testing rollout

7. Monitoring: Drift detection, performance
tracking, periodic retraining

6.3 Deployment Architecture

Mobile Application:

� Android: Target API 33 (Android 13), min SDK
21

� iOS: Target iOS 15+, SwiftUI interop

� Web: Progressive Web App with service worker
caching

Backend Services:

� Kubernetes cluster with 3 replicas per service

� Horizontal Pod Autoscaler (HPA) based on CPU
(70% threshold)

� NGINX ingress controller with rate limiting

� Prometheus + Grafana monitoring stack

6.4 Security and Compliance

Data Protection:

� Expense data never transmitted (100% on-device
storage)

� SMS text anonymized before API transmission
(user ID stripped)

� End-to-end encryption for all network communi-
cation

Regulatory Compliance:

� RBI Digital Lending Guidelines (2022)

� Digital Personal Data Protection Act (DPDPA)
2023

� IT Act 2000 Section 43A compliance

� Minimum data collection principle (privacy by de-
sign)

Permission Model:

� SMS READ: User opt-in required, explicit consent
dialog

� Microphone: Runtime permission for voice assis-
tant

� Noti�cations: Con�gurable for security alerts

� No location, contacts, or camera access required

7 Related Work

7.1 Financial Literacy Platforms

Existing platforms like MoneyControl, ET Money,
and Paytm Money focus on investment tracking
but lack comprehensive fraud education. Govern-
ment initiatives (NPCI's UPI Safety, RBI's JAM
Trinity) provide static educational content without
interactive learning. RupeeBee distinguishes itself
through gami�cation, multilingual voice navigation,
and scenario-based fraud simulations.

7.2 Fraud Detection Systems

Commercial solutions (Truecaller, Hiya) employ
crowdsourced blocklists and heuristic rules, achiev-
ing 75-82% accuracy. Academic research on
SMS spam detection primarily targets English-only
datasets. Our attention-based BERT model ad-
dresses:
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� Code-mixed language handling (Hinglish, Bengali-
English)

� Contextual understanding beyond keyword
matching

� Adversarial robustness against evolving fraud pat-
terns

7.3 Mobile Banking Security

Bank-speci�c apps (SBI YONO, ICICI iMobile) in-
tegrate basic security alerts but lack:

� Cross-bank fraud education (RupeeBee is bank-
agnostic)

� Real-time threat detection (our background ser-
vice model)

� Linguistic accessibility (6-language support)

8 Limitations and Future Work

8.1 Current Limitations

1. iOS Restrictions: Apple's privacy sandbox pre-
vents SMS access; iOS users must manually for-
ward suspicious messages.

2. Model Drift: Fraud patterns evolve; requires
periodic retraining (currently manual, 3-month
cycle).

3. Voice Assistant Scope: Sarathi currently han-
dles FAQs; lacks transactional capabilities (bal-
ance inquiry, fund transfer).

4. O�ine ML: SMS model runs server-side; no in-
ference when o�ine (planned: on-device TFLite
deployment).

8.2 Future Enhancements

1. Federated Learning: Privacy-preserving model
updates using user devices without centralized
data collection.

2. Dialect Support: Expand beyond 6 languages
to regional dialects (Bhojpuri, Gujarati, Tamil,
Kannada).

3. Anomaly Detection: Behavioral analytics for
account activity monitoring (unusual transaction
patterns).

4. Integration APIs: Bank backend integration
for real-time balance queries, transaction history
in calculators.

5. Social Learning: Community-driven fraud re-
porting with reputation scoring.

9 Conclusion

This paper presented RupeeBee, a comprehensive
�ntech platform addressing the critical intersection
of �nancial literacy and fraud prevention in India's
rapidly digitizing banking ecosystem. Our key con-
tributions include:

1. Novel ML Architecture: Attention-based
BERT model for SMS spam detection achieving
94.2% accuracy with code-mixed language sup-
port, outperforming traditional classi�ers by 18%
in Recall.

2. Comprehensive Security Framework: Multi-
layered Shield system combining SMS and URL
threat intelligence with sub-200ms latency, suit-
able for real-time mobile deployment.

3. Inclusive Design: First-of-its-kind multilingual
(6 languages) �nancial literacy platform with
voice navigation, serving non-English speaking
populations.

4. Production Deployment: Successfully de-
ployed cross-platform solution (Android, iOS,
Web) with 99.7% uptime, validated through 3-
month beta with 80+ users.

RupeeBee demonstrates that �nancial inclusion
and cybersecurity can be e�ectively uni�ed through
thoughtful system design, leveraging deep learn-
ing for intelligent threat detection while maintain-
ing user privacy through on-device processing. The
modular architecture enables seamless integration
with existing banking infrastructure, as evidenced
by our collaboration with Punjab & Sind Bank.

As digital banking penetration increases in tier-
2 and tier-3 cities, platforms like RupeeBee become
essential public infrastructure. Our work provides a
template for building secure, accessible, and educa-
tional �ntech solutions that empower users to navi-
gate the digital economy con�dently.

Impact Statement: By preventing fraud and
improving �nancial literacy, RupeeBee directly con-
tributes to the Reserve Bank of India's vision of safe
and inclusive digital banking. Our open-source com-
mitment (pending bank approval) will enable wider
adoption across public sector banks, amplifying so-
cial impact.
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